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The effect of uniform rotation on surface-tension-driven convection in an 
evaporating fluid layer is considered both theoretically and experimentally. The 
theoretical analysis follows the usual small-disturbance approach of perturba- 
tion theory and leads, at the neutral state, to a functional relation between the 
Marangoni and Taylor numbers which is then computed numerically. In  addi- 
tion, i t  is shown analytically that, in the limit of rapid rotation, the velocity and 
temperature fluctuations are confined to a thin Ekman layer near the surface, 
and that Nc = 4.42Ti and a, = 0.5Ti, where N, and a, are, respectively, the 
critical Marangoni number and the critical wave number for neutral stability, 
and T is the Taylor number. 

The experimental part deals primarily with the flow pattern of a 50 % solution 
of ethyl ether in n-heptane evaporating into still air. In this case, the convective 
flow is surface-tension-driven and its structure was observed using schlieren 
optics. In the absence of rotation, the flow shows a remarkable cellular pattern 
when the layer is shallow, but when the depth of the layer is increased the 
pattern quickly becomes highly irregular. In contrast, for T > lo3, a cellular 
structure is always observed even for deep layers, a result which is attributable 
to the stabilizing effect of the Coriolis force. A further increase in T leaves the flow 
pattern unchanged except that the size of the cells is found to decrease as T-f, 
which is in agreement with the results of the linear stability analysis. 

1. Introduction 
As is well known, the convective currents arising spontaneously in evaporating 

liquids are generally due to two fairly dissimilar mechanisms: the familiar buoy- 
ancy mechanism, and the somewhat less familiar but equally important surface- 
tension mechanism which, as shown analytically by Pearson (1958), can cause 
instability in systems that would be classified as stable according to the Rayleigh 
criterion. The presence of such convective flows is often considered desirable in 
many operations involving heat or mass transfer because it increases the rate of 
transport of energy and matter, On the other hand, there exist a number of impor- 
tant cases involving the determination of certain physical properties such as the 
condensation coefficient or the interfacial resistance to mass transfer from a liquid 
to a gas phase, where it is imperative that these currents be suppressed to the 
fullest possible extent. Buoyancy-driven convection can be eliminated of course 
by operating with relatively shallow liquid layers, i.e. less than about 5mm deep 
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(Berg, Boudart & Acrivos 1966). In  contrast, surface-tension-driven convection 
seems to persist even in pools 0.5mm in depth (Berg et aE. 1966) which, from 
a practical point of view, represents the minimum thickness of the layer that one 
can operate with experimentally. Although it is true that one could eliminate 
this type of convection, especially for water, by using small amounts of surface 
active agents the stabilizing effects of which are quite pronounced (Berg & 
Acrivos 1965), such a technique would have an obvious disadvantage in that it 
would affect greatly the very nature of the surface and hence precisely those 
physical properties that one wishes to measure. 

In  view of the extraordinary stability of rotating fluids, it appears logical to 
suppose, however, that the three-dimensional convective motions in evaporating 
layers could be damped by subjecting the system to uniform rotation, a fact 
which has already been demonstrated by Chandrasekhar (1961) for the buoyancy- 
driven case. It is the purpose of this paper, therefore, to investigate theoretically 
the possible influence of such a Coriolis force on convection which is surface- 
tension driven, and to correlate the results of the mathematical analysis with 
those of an experimental study of convection in evaporating systems undergoing 
uniform rotation. 

2. Linear stability analysis 
Our mathematical treatment will follow the classical lines of linear stability 

theory as presented by Chandrasekhar (1961), whose notation we shall also adopt 
with only minor exceptions. We consider a system consisting of a liquid layer of 
infinite horizontal extent which is confined between two horizontal planes 
representing, respectively, a vapour-liquid interface at z’ = 0 and an isothermal 
solid wall at  x’ = d. The basic equations are first linearized in terms of w‘, <‘ and 
0’ which denote, respectively, the perturbations in the z-component of the 
velocity, the z-component of the vorticity and the temperature, and are then 
rendered dimensionless by letting (x, y, z )  = (x‘/d, y’ld, z’ld), w = w’d/v, 6 = <‘d2/v, 
0 = O‘KIPvd, and t = t‘v/d2. Thus, we arrive a t  

ac aw 
at 
--V25;= J T Z ,  

Pr(aB/at) - V20 = - 20, (3) 

where Pr = v / K  is the Prandtl number and T = 4Q2d4/v2 the Taylor number. 
Here Q denotes the constant speed of rotation, /3 the undisturbed temperature 
gradient across the layer, v the kinematic viscosity of the liquid, and K its thermal 
diffusivity. The equations shown above are of course identical to those in 
Chandrasekhar (1961) except for the absence of the buoyancy term. It is also 
clear that these equations apply even when the instability of the system is caused 
by a concentration rather than a temperature gradient, apart from the simple 
change of parameters 

(6 P, 0, Pr) -+ (9% a, G, fit>, 
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where 9 is the molecular diffusivity, a the steady-state concentration gradient, 
c the concentration disturbance, and Sc = v / 9  the Schmidt number. 

The boundary conditions at the isothermal solid surface z = 1 are 

w = awjaz = 5 = B = 0, (4) 

ul= a c p  = 0, ( a q a z )  + N ~ O  = 0, (a2wiaz2) + m q e  = 0, ( 5 )  

while, at the vapour-liquid interface z = 0 ,  considered non-deformable,“ 

where, as shown by Pearson (1958)) the last relation, with V: = a2/ax2+a2/ay2, 
represents the stress balance at the free surface. Here, Nu = qd/k denotes the 
vapour-phase Nusselt number for heat transfer and M = s/3dz/pK the ‘Maran- 
goni’ number (Scriven & Sternling 1960), where q is a vapour-phase heat-transfer 
coefficient, E is the thermal conductivity of the liquid, p is its viscosity, and 
s represents the absolute value of the rate of change of the surface tension with 
temperature evaluated at the surface temperature. 

The equations are now simplified in the usual manner by decomposing the 
solution in terms of normal modes, so that 

{w, c,s> = {f(z), w, g(z))F(z,  Y) cut, (6) 

where cr is the dimensionless time constant, in general complex, and F satisfies 

V f F  = -azF the relation 

in which the ‘wave-number ’ a, arising from the separation of variables, is indica- 
tive of the size of the transverse structure of the perturbation. Under the assump- 
tion that the neutral state is a stationary one, in which casecr = 0, the substitution 
of (6) into (1)-(3) leads, after elimination of the vorticity by cross-differentia- 
tion, to 

[ (D2-a2)3+TP] f=  0 and (D2-a2)g = f  (7 )  

with boundary conditions 

} ( 8 )  
f =  Of= D(D2-a2)2f= g = 0 at z = 1 

and f = (D2-a2)2f  = 0; Dg+Nug = 0, Dy= a2Hg at z = 0, 

where D = d/dz. Of course, this system reduces to that considered by Pearson 
when T = 0. 

The general solution for f is clearly 
fi 

f(z) = Aje4$,  
j=1 

where the pj’s are the roots of 

(Pi” - c ~ ~ ) ~  + Tpj” = 0, 

while that for g is 

(9) 

* Scriven & Sternling (1964) have extended Pearson’s (1958) stability analysis of 
surface-tension-driven convection by including the effect of surface deformation, which 
was shown to exert a destabilizing influence, especially for disturbances of very large wave- 
length. In the present treatment this extra complication will not be taken into account. 
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These, when substituted into the boundary conditions (8) yield a system of 
eight linearly independent linear homogeneous algebraic equations in A j  and 
Bj. The requirement that the determinant of the coefficients be zero in order 
to insure a non-trivial solution, provides us then with a characteristic 

1.0 
- 2 - 1  0 1 2  3 4 5 6 

log N u  

FIGURE 1. Critical value of the Marangoni number Allc vs. the vapour-phase 
Nusselt number Nu for T = 100. 
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log T 

FIGURE 2. Critical valus of the Marangoni number n/r,vs. Taylor number T 
for NU = 0. 

equation relating the Taylor number T, the vapour-phase Nusselt number Nu, 
the wave-number a and the Marangoni number M .  From this one can obtain 
fmally the critical Marangoni number M,, which refers to the minimum value 
of ill for given T and Nu, as well as the corresponding critical wave-number a,. 

The effect of Nu on the stability of the system is shown in figure 1, which was 
constructed from a numerical solution of the characteristic equation. The system 
was found to be less stabIe when Nu = 0, which is as expected since clearly an 
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isothermal free surface (Nu + co) yields a completely stable configuration as far 
as surface-tension-driven convection is concerned. 

The variation of the critical Marangoni number and the critical wave-number 
with T is depicted in figures 2 and 3 for the most unstable case, i.e. for Nu = 0. 
It is evident that both M, and a, increase monotonically with T and that, 
apparently, M,- Ti and a,- T i  

as T+m. This last result we shall now establish by means of an asymptotic 
analysis of (7) and (8). 

d 

- 1  

' ' - 1  0 1 2  3 4 5 6 7 8 9 
log T 

FIGURE 3. Critical value of the wave-number a, vs. Taylor number T for LVU = 0. 

3. Asymptotic solution for large Taylor numbers 
It is instructive at this point to develop the asymptotic solution of (7) and (8) 

as T + co. This is a straightforward matter because a simple order of magnitude 
analysis of the stability equations leads to the conclusion that f = g = 0 for 
all x except for a thin layer near the free surface, z = 0, where all the temperature 
and velocity fluctuations are confined. Hence, we seek a transformation of 
variables which will eliminate T from the system of equations in such a way 
that throughout this Ekman boundary layer all the principal terms in (7)  and 
(8) will be retained. The appropriate transformations are then, 

x = zT), a. = aT-i, G = gT4, No = MT-i ,  Do E d / d x ,  

following which (7) become 

[(D:-~tg)~+Dg]f= 0 and (Dg-ai)G = f, (11)  

with boundary conditions 

f = (D;-ag)2f= 0; D;f= afMoG; DOG = (Nu/T*)B+O at z = 0 

together with the requirement that both f and G approach zero exponentially 
as x - f c o .  We can see then that the transformed equations do indeed become 
independent of the Taylor number as T -+ co thus leading to a proper asymptotic 
solution of the original stability equations. 

To solve the transformed system is now a simple matter. To begin with 

6 

j=1 
f = C Aj exp { P j  x}, ( 12) 
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where (p;-a33+p; = 0, 

which becomes 73+7+a; = 0 

upon setting y = p5-a:. This expression has roots 

y l = A + B ;  Y ~ = ~ ~ = - - ( A + B ) + - ~ , / ~ ( A - B ) ,  

where ,4 = [ - 161.2 ,+(&:+&)4]* and B = -[&ag+(&ai+&)4]), 

so that pj = - p j + 3  = &,+a;) (j = 1 , 2 , 3 ) .  

to 3 

PI = - ,/(a:- 2a); 

Since, however, only pl, p2 and p3 possess negative real parts, (12) simplifies 

f =  E Ajexp{pj,-), 
j = 1  

where 

with a = - + ( A  + B )  and b = 9 , / 3 ( A - B ) .  Also, the solution for G satisfying the 
condition DOG = 0 at z = 0 and G+O as z+co is 

p2 = p3 = - , / (ag+a+ib),  

G =  - sinh a,(,- - x)f(x) d s ,  

Hence, the remaining boundary conditions a t  z = 0 yield the three algebraic 
equations 

A, = 0; 3 = 0; c 3 A,(P'a+a,.p,] aoM0 = 
j=l j =  1 j=l 

from which one can derive the explicit expression for M,, 

9a2 + b2 
M - -  

O -  2a,a  

( 1 3 )  
with r = , /{(a8+a)2+b2},  35 = tan-lb/(a;+a) and R = (3a2+b2) /4ab .  

The dependence of M, on a,, as obtained numerically from ( 1 3 ) ,  is shown in 
figure 4 .  In  particular, since a minimum value for M,, equal to 4.42 ,  was found at 
a, = 0.50, 

Mc-+4-42Th and ac-t0-50T2 as T+w. ( 1 4 )  

This result also holds asymptotically irrespective of the boundary conditions 
a t z =  1. 

For values of T > lo4 these asymptotic expressions are in excellent agreement 
with the results of the exact solution shown in figures 2 and 3. The comparison is 
presented in table 1 .  
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It is of interest to point out also that the asymptotic analysis just developed 
can be extended with ease to the case where NUT-* is O( 1). Thus, by employ- 
ing the boundary condition DOG = NuT-$G a t  z = 0, we arrive again at (13) 
but with M,(1 + N u / ~ , T ~ ) - ~  replacing M,, so that figure 4, which depicts the 
right-hand side of (13), can still be used to compute the new critical values 

V "  

1 2 4 5 6 8 10 20 40 60 80100 200 400 

Mo 

FIGURE 4. M,, vs. a. corresponding to the asymptotic limit of an infinite 
Taylor number. 

Exact solution Asymptotic solution 
Taylor & & 

number 4% a, MC a, 
- - 0 80 2.0 

102 92 2.2 
1 0 3  164 3.0 140 2.8 
104 470 5-0 442 5.0 
105 1400 8-6 1400 8.9 
1 0 6  4420 15.8 4420 15.8 

TABLE 1. Comparison between the exact values of M, and a, (for the case Nu = 0) 
and those computed from the asymptotic solution (14) 

- - 

of 01, and M,. These become, for example, 0.60 and 12.60, respectively, when 

The solution of the stability problem for surface-tension-driven convection as 
T -+ 00 differs of course in a number of important aspects from the corresponding 
solution of the buoyancy problem. The latter has been analysed by Chandra- 

N ~ T - ~  = 1. 



814 A .  Vidal and Andreas Aerivos 

sekhar (1961) and more fully by Roberts (1965) and by Niiler & Bisshopp (1965). 
In  particular, Niiler & Bisshopp have shown that as long as the planes z = 0 and 
z = 1 remain non-deformable so that f = 0, the asymptotic forms for the critical 
Rayleigh number R, and the critical wave-number 01, become 

Rc+8.69TQ and ac-+l.31T* as T + m .  (15) 

This result indicates, upon comparison with (14), that for large values of T, 
rotation is somewhat more effective in damping buoyancy-driven convection 
than surface-tension-driven flow. Another important difference is that, in the 
buoyancy case, the presence of Ekman layers at z = 0 and z = 1 can be dis- 
regarded to a first approximation when computing asymptotic values for R, 
and ac, since the two expressions in (15) arise from the non-vanishing solution 
of the stability equations inside the ‘core’ 0 < x < 1 which excludes the 
Ekman layers. Of course, such differences are not surprising since the two 
problems are quite dissimilar both from the physical as well as from the mathe- 
matical point of view, the latter arising primarily from the fact that in the 
surface-tension case the eigenvalue occurs in one of the boundary conditions 
rather than in the basic differential equation as in the Rayleigh problem. 

In closing this section it is worth pointing out that in our analysis so far we 
have considered only the case of an isothermal boundary at  z = 1, having 
ignored the equally important case of the ‘insulating’ boundary condition 
g’( 1) = 0. We have already remarked, however, that the two asymptotic expres- 
sions in (14) apply irrespective of the boundary conditions at z = 1, and 
since, as can be seen from figures 2 and 3, a knowledge of the asymptotic 
behaviour of the solution as T + 0 (already computed by Pearsons 1958) and as 
T + CQ is sufficient to allow us to estimate the full Mc vs. T curve by a simple 
interpolation, it did not seem worth while to repeat the exact calculations for 
the insulating case. 

4. The nature of the marginal state 
Now that the conditions for the onset of stationary convection have been 

determined it is desirable to examine the possibility that the convection could 
set in via an oscillatory mode. Actually, since an earlier analysis (Vidal & 
Acrivos 1966) showed that for T = 0 the marginal state is a stationary one, it 
appears sufficient to consider only the asymptotic case T + m .  Thus letting 
(T = iyTt with y real, one obtains in place of (1 1) 

[(Dt-01i)(Di-ai- iy)~+Di]f  = 0, (Di-01i-iyPr)G = f (16) 

subject to the conditions 

f = DOG = (D;-a i ) (Di-a i - iy ) f  = 0, Dif = aiJ foG at x = 0 

and G+O, f + O  as x+co. 

and results in a characteristic equation of the form 
The method of solution is quite similar to that presented in the previous section 
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where R M  and IN are real valued functions. However, since Ho is real this 
requires that I M  be set equal to zero. 

The function IM(ao,  Pr, y )  was computed numerically for Pr = 0.1, 0.25, 0.5, 
0.7,l.Oand 7*0andforao = 0.1,0.5,1.0,2-0,5.0, 10.0, and, although y was varied 
from 0 to 10 in steps of 0.2, the only real root of I M  was found to occur at y = 0. 
This is of course indicative of a stationary neutral state. Thus, the possibility of 
overstability has been excluded for the two extreme cases T = 0 and T+co, 
which in turn makes it highly unlikely that it could arise for intermediate values 
of T. This is in contrast with the analogous problem in buoyancy-driven convec- 
tion for which, as shown by Chandrasekhar (1961)) overstability does indeed 
manifest itself for Pr < 0.677. 

5. Experimental observations 
Evaporative convection in liquid layers undergoing uniform rotation was 

studied experimentally by means of a schlieren system already described by 
Berg et al. (1966). The liquid was placed in a circular glass dish 6 in. in diameter 
which in turn was set on a glass turntable that could be rotated at  speeds up to 
half a revolution per second. The fact that the curvature of the surface increased 
with increasing angular velocity was found to be a limiting factor in obtaining 
high values of the Taylor number for very shallow layers, since the speed of 
rotation was always controlled so as to keep the meniscus height at  a value less 
than about 15 yo of the average depth of the liquid pool. In addition, unavoidable 
vibrations in the system (due to small eccentricities, vibration of the motor, etc.) 
caused circular waves to propagate over the liquid surface and thus to interfere 
with the visualization of the flow. These waves were eliminated by introducing 
a circular beach having a slope of 30" and covering the outer half of the bottom 
of the dish. 

The morphology of the convective motion was studied experimentally using 
a variety of pure organic liquids and binary mixtures, but the majority of the 
experiments were carried out with a 50 yo solution by volume of ethyl ether in 
n-heptane in which the more volatile component (ether) has a lower surface 
tension while being denser than n-heptane. Thus, upon evaporation of ether, 
a potentially unstable configuration results with respect to the surface-tension 
mechanism alone. Of course, temperature variations will also set in which are 
destablizing both with respect to surface-tension-driven as well as to buoyancy- 
driven flow, but, for most evaporating liquid mixtures and certainly for the 
ether-heptane solution in question, these temperature effects are minor com- 
pared with those brought about by composition differences between the surface 
and the bulk. Hence, such systems may be considered isothermal for the purposes 
of this work. 

It has been reported previously (Berg et ab. 1966), that the convective pattern 
of evaporating shallow layers (depth less than 0.5cm) shows a remarkable 
cellular structure which, upon increase in the depth (d > l-Ocm), becomes 
highly irregular and non-stationary. Now, it would be expected from the 
mathematical analysis that, when a moderately deep layer of an evaporating 
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liquid is rotated, the stabilizing effect of the Coriolis force would bring the system 
closer to its marginal state and that above a certain value of the Taylor number 
a cellular convective pattern would be recovered. This change from a random 
motion to a regular flow structure with increasing T was observed in all the 
liquids that were studied. The steady pattern corresponding to a value of 
T > lo3 was always found to be one of hexagonal cells which, once established, 
diminished in size as the Taylor number was further increased. 
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FIGURE 6. Decrease of cellular diameter-depth ratio, #/d, with increasing Taylor number T 
for a 50 yo solution of ether in m-heptane. 

The effect of the Taylor number T on the convective pattern of an evaporating 
solution of ether in n-heptane is illustrated in figure 5 (plate l), and the variation 
of the cell diameter d with T i n  figure 6. It is seen from figure 6 that, for T > lo4 

4/d z 12T-3 or LX = 0.7T2, 

a result that compares very favourably with (14) even though the latter 
represents the asymptotic solution of the linearized equations describing the 
marginal state. This is analogous to the situation encountered by Nakagawa & 
Frenzen (1955) who found that the cell sizes in rotating fluids undergoing 
buoyancy-driven convection were in very close agreement with the values pre- 
dicted theoretically. This agreement is all the more remarkable in the present 
case considering the fact that the stabilizing effect exerted by the ‘favourable’ 
density gradient which is produced by the rapid depletion of ether from the 
surface has not been taken into account in the mathematical analysis. 

Another aspect of the experimental studies consisted of examining how far the 
convective motion propagated below the liquid surface. Glass microballoons 
were suspended in the fluid and their motions were followed visually as they were 
convected by the moving liquid. It was found that when the evaporating pool 
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vas not rotating the convective currents penetrated down to the bottom of the 
layer, but that for T > lo3 the three-dimensional motions were confined to a small 
portion of the liquid adjacent to the free surface with the bulk of the fluid moving 
along closed streamlines characteristic of solid-body rotation. Moreover, it was 
observed that the convective sublayer became smaller as the speed of rotation 
was increased. This is, once again, in qualitative agreement with the results of the 
asymptotic analysis for large T according to which the velocity and temperature 
or concentration fluctuations at the marginal state should be confined to a layer 
near the surface of thickness proportional to T-f. 

At this point it is of interest to note that according to the asymptotic analysis 
for large T the velocity fluctuations near the marginal state are greater than the 
dimensionless temperature or concentration fluctuations by a factor of TB. In  
view of the previous remarks regarding the agreement between theory and experi- 
ment i t  might also be expected then that this property of the system would be 
carried over to the final state characterized by finite amplitudes. Experimentally 
no appreciable variations of the convective velocity were observed as the Taylor 
number was changed over a wide range of values ( lo3 -+ lo6) and it is reasonable 
to suppose therefore that the dimensionless temperature or concentration fluctua- 
tions became smaller as T was increased. 

The sense of the circulation in the convective cells was also determined experi- 
mentally by sprinkling small amounts of lycopodium powder on the surface of 
the liquid. The motion of the particles was then followed visually. When a 50 yo 
solution of ether in heptane was allowed to evaporate it was observed that the 
tracer particles were swept away from the cell centres and that they tended to 
accumulate at the periphery, thus indicating that the liquid was rising in the 
core of the cell and descending along the cell boundaries. Similar experiments 
were repeated using a liquid for which only the buoyancy mechanism was 
operative, namely water (Berg et al. 1966), where it was found that the tracers 
now moved away from the cell periphery and accumulated at the cell centre. 
This was in agreement with the earlier observations of Nakagawa & Frenzen 
(1955). 

6. Conclusions 
The main conclusions that can be drawn from the present work on rotating 

liquid layers for which convection is driven by surface-tension gradients are the 
following: 

Uniform rotation enhances the stability of the system. Both the critical 
Marangoni number M, and the critical wave-number a, are monotonically 
increasing functions of the Taylor number T ,  having asymptotic forms 
M, = 4.42TB and a, = 0.5T), respectively, as T-too. This asymptotic result 
indicates that at the marginal state the characteristic cell dimension P does not 
depend on the depth d of the layer and that the critical vertical temperature 
gradient ,4 is independent of d and, surprisingly, of v, the kinematic viscosity of 
the fluid. 

The marginal state of the system is stationary. 
52 Fluid Mech. 26 
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In the limit T -+ 00 the temperature and velocity fluctuations are confined to 
an Ekman layer whose thickness is proportional to T-f. 

For large values of T the dominant convective pattern consists of hexagonal 
cells that diminish in size as T increases, in good agreement with the results of 
the linearized theory. 

The prediction based on the linearized analysis that, as T +w, the velocity 
fluctuations should be O(T*) larger than the temperature fluctuations relative to 
the mean temperature drop, and the observed fact that the former are indepen- 
dent of T seem to indicate that whenever the convection is driven by surface 
tension these normalized temperature fluctuations across the surface of an 
evaporative liquid layer should become smaller as the speed of rotation is 
increased. 

In the presence of uniform rotation, the direction of the flow is upward in the 
core and downward along the cell boundaries when the convection is surface- 
tension-driven, whereas the reverse holds whenever the convection is driven by 
buoyancy and the system is cooled from above. 

This work was supported in part by grants of the Chevron Research Corpora- 
tion and by the Office of Saline Water. 
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